
JIAC IV – An Open, Scalable Agent Architecture for Telecommunications
Applications *

Ralf Sesseler, Sahin Albayrak

DAI-Lab, TU Berlin
Sekr. FR 6-7, Franklinstr. 28/29

D-10587 Berlin, Germany
sesseler@cs.tu-berlin.de, sahin@cs.tu-berlin.de

* This work was funded by T-Nova Deutsche Telekom Innovationsgesellschaft mbH.

Abstract

JIAC IV is a generic agent toolkit with an emphasis on the
realisation of applications in the areas of telecommunica-
tions and electronic commerce. We motivate the need for
open, scalable, and flexible systems and hence the advan-
tages of agent technology in these areas. Then, we de-
scribe the basic architectural principles of CASA, which
builds the structural and functional base of agents in
JIAC IV. The component framework of CASA makes
agents highly scalable and allows reconfiguration at run-
time. The control architecture of CASA combines reac-
tive, deliberative, and interactive capabilities to control
agent behaviour in a flexible manner.

1 Introduction

The future of the telecommunications world will be domi-
nated by increasing customer demands for new services
and the integration of electronic and mobile commerce.
One of the favourite slogans today is “information any-
where, anytime” claiming the ubiquitous availability of
information and services via electronic networks like the
Internet. On the other hand, deregulation leads to open
markets and increasing competition. Therefore, the tele-
communications companies are evolving from simple
network providers to suppliers of service infrastructures
supporting flexible and dynamic provisioning and combi-
nation of services.

We distinguish basic telecommunications applications
from telematics services. By the notion of a telecommu-
nications application, we generally denote any kind of
information system that is necessary to run, to manage,
and to administrate computer networks. On the contrary,
the notion of a telematics service emphasises the aspect of
trading between vendor and customer based on such net-
works. Hence, the telecommunications applications have
to build the foundation for telematics services.

From this distinction, three main roles emerge in the area
of telecommunications, each of them having specific re-

quirements of their own. First, the suppliers of the
telematics services need to develop and introduce new
services rapidly and maintain existing services on a robust
and secure service environment. The customers of these
services demand convenient, personalised access and
mobility support. Both benefit from the possibility to
combine services on demand, leading from basic to high
value services. Finally, the providers of the telecommuni-
cations infrastructure have to deal efficiently with increas-
ingly complex and open networks with heterogeneous
structures and technologies. Also, they have to take into
account the requirements of the other two roles, because
they provide the basic layer.

Agent technology [1, 2] seems to be a promising way to
realise such telecommunications infrastructures because
of its inherent openness and distribution as well as be-
cause of the flexible and interactive capabilities of agents.
The agent toolkit JIAC IV (Java Intelligent Agent Com-
ponent-ware, Version IV) has been developed as a means
to build and deploy telecommunications applications and
telematics services as multi-agent systems to benefit from
these advantages.

In the following, we provide a short overview of the
JIAC IV agent toolkit as a whole. Then we concentrate on
CASA (Component Architecture for Service Agents),
which provides the structure and control mechanisms of
single agents in JIAC IV. We describe how the compo-
nent framework enforces openness and scalability by
modularisation and how this modularisation facilitates the
reuse of components at design-time as well as the recon-
figuration of agents at run-time. The needed autonomy
and flexibility of agents is ensured by a control scheme,
which integrates reactive, deliberative, and interactive
behaviour. Finally, we place our work in the context of
related work and draw some conclusions.

2 Overview of JIAC IV

JIAC IV is intended as a comprehensive toolkit for devel-
oping and deploying agent systems covering design meth-
odology and tools, agent languages and architecture, a

FIPA compliant infrastructure, management and security
functionality, and a generic scheme for user access. For a
more comprehensive overview, we refer to [3].

The development process is guided by an agent-oriented
software engineering model, which is tailored to the spe-
cifics of JIAC IV. It comprises tools for agent specifica-
tion including compilers for the different agent languages
and tools to analyse and debug the running system.

On the single-agent level, CASA provides a scalable
component framework and a flexible, knowledge-based
behaviour control scheme, which we will describe further
in the following sections.

The agent infrastructure has to facilitate dynamic interac-
tions between agents. Based on the specifications of FIPA
[4], it comprises the communication infrastructure as well
as services to administer the agents of a society (Agent
Management Service, AMS) and the services they supply
(Directory Facilitator, DF).

Commercial applications have special requirements on the
reliability and trustiness of the system. Therefore, the
JIAC IV toolkit provides several management and secu-
rity functionalities, which can be easily integrated and
adapted as needed thanks to the overall scalability. Man-
agement services include configuration, fault manage-
ment, and logging of system processes, which may be
used for analysis as well as for accounting. Security is-
sues are addressed by authorisation, authentification, and
privacy mechanisms.

To provide a convenient way for the user to interact with
the agent system, JIAC IV contains a generic scheme to
translate agent functionality into human accessible ser-
vices. Thereby, dedicated agents provide graphical user
interfaces, which can be used by a single access point.

3 Component Framework

Agents have to be adaptable to different purposes, tasks,
and domains not only by varying knowledge but also by
specific capabilities to process this knowledge accord-
ingly. Therefore, CASA agents have a modular internal
structure consisting of an open set of components that can
be adjusted to different requirements at design-time as
well as at run-time. Since components are reusable, new

agents can be created using existing components for ge-
neric functionalities, which reduces development effort to
application-specific implementations.

CASA provides a framework to manage the components
of an agent and their interactions. Components are inte-
grated into an agent by a common interface to the core
agent, which realises the internal infrastructure. By this
interface, the core agent controls the component and its
configuration and gives it access to the message passing
mechanism for component interactions. Among one an-
other, components are identified by the roles they take
within the agent describing their interactive capabilities to
abstract from different implementations of the same func-
tionality.

3.1 Component Interactions

Components interact by passing messages relative to their
roles. Received messages are stored in a buffer to allow
asynchronous processing. Thus, interactions are decoup-
led both from time and from the component realising a
role, which is needed to allow changes of the component
set at run-time without affecting the functioning of the
agent.

The interacting components know only the roles of their
counterparts. Thus, dependencies only exist between
roles, but not between specific components. The roles
serve as an interface description for the interactions of
components and for their integration into the agent. A
single component can have several roles, but each role
must be unique to an agent to identify exactly one compo-
nent.

Each role belongs to one or more groups of roles. Such a
group subsumes roles with a common functionality. A
group has the same kind of interface description as a role,
which their roles inherit. On top of the hierarchy is a most
common role subsuming all groups.

The specification of a role covers two parts. First, it de-
clares properties, by which a component implementing the
role can be configured and its state retrieved.

For interactions, a role declares the message types it can
process and which roles and groups of roles have permis-
sion to send them. Thus, control structures consisting of
several dependent roles can be defined.

JIAC IV Agent Toolkit
Architecture (CASA) Development Run-Time

components control architecture methodology tools infrastructure administration
components
roles
messages

knowledge languages
reactive
deliberative
interactive

analysis
design
implementation
evaluation

configuration
language compilers
debugger

market places
migration
white pages
yellow pages
security

configuration
fault management
end user access

Figure 1. The JIAC IV Agent Toolkit

3.2 Components of the Core Agent

The core agent itself consists of three components. The
Agent Kernel manages the components and the agent as a
whole. The delivery of messages between components is
done by the Message Server. The Control Cycle organises
all processing of the agent including that of messages.

Agent Kernel

The main task of the Agent Kernel is to manage the com-
ponent structure of an agent. Also, it represents the agent
as a whole and its properties and life-cycle state.

The common interface of the components allows the
Agent Kernel to configure them by changing their proper-
ties. Properties can be declared for roles as well as for
components. The properties of the agent are realised as
properties of the Agent Kernel. A special property is the
life-cycle state that determines its status of activity. All
components have the same life-cycle state as the agent,
except while they are added or removed or when they are
defective.

Via the Agent Kernel, components of an agent can be
added, removed, and exchanged. The Agent Kernel only
allows adding a component, if no role of it is already oc-
cupied by an existing component. To add a component,
its interface is connected to the components of the core
agent for mutual access until it is removed again. Ex-
changing a component means adding a component while
removing all previously existing components with corre-
sponding roles.

The Agent Kernel creates an agent out of a specification
containing a list of components and their initial properties.
This is done by creating instances of the components,
configuring them by the properties, and adding them to
the agent.

Message Server

The Message Server provides the infrastructure for com-
ponent interaction. It manages an address list that associ-
ates roles and existing components of the agent (Figure 2).

To send a message, a component creates it and passes it to
the Message Server. The Message Server validates the
message by verifying that the sending component takes
the role declared as sender and that this role has the per-
mission to send messages of the given type to the receiver
as specified in the role definition for the receiver address.

If the message is not valid or no component exists in the
address list for the receiving role, the sender is informed
accordingly. Otherwise, the Message Server delivers the
message by adding it to the end of the queue of the re-
ceiver, which is part of the common interface of the com-
ponents.

Control Cycle

The Control Cycle provides and manages the processing
resources for the components. For controlled interrup-
tions, all processes of the components have to work step
by step. Thus, components are ensured to be in a stable
state when they are removed.

Components declare by the common interface if they have
steps to execute. Then, the Control Cycle assigns process-
ing resources as available. Steps can be executed in a
sequential, parallel, or mixed mode, but only one step per
component is executed at one time.

For message processing, the Control Cycle removes the
first message from the buffer queue and passes it to the
component for processing (Figure 2).

3.3 Reconfiguration at Run-Time

A main design motivation for the component framework
is the reconfiguration of agents at run-time. Especially for
agents that provide services, tasks have to be changed,
updated, or adapted without the agent or some of its ser-
vices being not available in the meantime. Thereby, not
only the knowledge like facts and operators, but also the
component functionality may need to be revised.

Changes of knowledge are a special case of component
reconfiguration of the components containing that type of
knowledge. The configuration of any component at run-
time can be done via the Agent Kernel using tools and
components for configuration by changing the declared
properties of roles and components.

C
R
M

component
role
message

C 1

message server

C 2 C 3

control cycle

C 1 C 2 C 3

M2

step

C 1 C 2 C 3 C 3
R a R b R c R d

M4M5

R a R b R c
R d

send M5
R a Å R c

deliver M5
R a Å R c

M1M3

call

referencemessage buffer

C
R
M

component
role
message

C
R
M

component
role
message

C 1

message server

C 2 C 3

control cycle

C 1 C 2 C 3

M2

step

C 1 C 2 C 3 C 3
R a R b R c R d
C 1 C 2 C 3 C 3
R a R b R c R d

M4M5

R a R b R c
R d

send M5
R a Å R c

deliver M5
R a Å R c

M1M3

call

reference

call

referencemessage buffer

Figure 2. Interaction by Message Passing / Execution

To change the functional part of an agent, components are
added, removed, or exchanged. Like creating, adding a
component simply means to configure it and to connect it
to the core agent. On removal, the component gains no
more new processing resources from the Control Cycle,
but it can finish the current step. Then it is disconnected
from the components of the core agent. Components can
register at the Agent Kernel to be informed about changes
of presence of components for some or all roles.

Exchanging a component means to replace a role without
affecting the current working of the agent, especially of
components interacting with that role by messages. The
new component replaces the old one directly at the Mes-
sage Server, so that at every time during the exchange
messages can be sent to that role. In addition, the mes-
sages addressed to the shared role waiting in the buffer of
the old component are moved to that of the new one en-
suring no message can get lost.

The exchange of a component takes place by simultane-
ously adding the new and removing the old component.
During the exchange, neither component has access to
processing resources. The new component takes over the
configuration and run-time state of the old one given by
their properties. Thus, it can continue the work of the
former without interruption or loss of information.

Since any component can take several roles that have to
be replaced at the same time and possibly by different
components, component exchange is done for a set of new
components. All existing components taking at least one
of the roles of the new components are removed to ensure
uniqueness of roles.

By the described mechanism, component exchange is
completely transparent to the remaining components even
with respect to ongoing interactions. All dependencies
between components are restricted to their roles ensuring
an open and scalable structure of the agent.

4 Control Architecture

The components of the core agent do not determine the
mechanisms to control the behaviour of an agent, but they
provide an open framework to design functional architec-
tures. Using the CASA component framework, such a
control structure is defined by a set of roles. The interde-
pendencies between these roles are stated by the message
types, a role accepts to receive from a selected set of other
roles, or at a more abstract level as the functionality, a role
has to provide to other roles.

Before proposing a default architecture for service agents
in CASA, we present a basic scheme for reactive, delib-
erative, and interactive behaviour. This scheme uses a
knowledge-based approach in the tradition of artificial
intelligence [5] and the BDI-theory of agency [6, 7] in a

pragmatic way without claiming to provide a base for
rationality or intelligence in a human sense. Instead, the
formal representation of declarative knowledge serves
mainly as a common ground for interactions between
agents providing a flexible and open scheme to express
meaningful contents in a standardised and expressive way.
On the other hand, the formal representation of procedural
knowledge enables more autonomous, flexible, and ex-
plicit control of the behaviour of an agent. Combining
both aspects, the formal descriptions of services enable
reliable and dynamic interactions between agents.

4.1 Control Scheme

Figure 3 gives an overview of the control scheme for the
default architecture of CASA. An agent represents as-
sumptions about the state of its environment as factual
knowledge. Its goals are states to reach and its intentions
actions to take. Rules describe the reactive dispositions,
while operators describe the options for deliberative ac-
tions and interactions. All knowledge is expressed and
structured by terminologies and representation schemes
contained in ontologies for different domains.

An agent updates its facts and goals permanently, in order
to reflect the current environmental and motivational state,
and reacts to new situations. To reach its goals, it selects
actions by deriving intentions using appropriate operators.
The intentions are coordinated and the contained operators
executed. To interact via services, agents communicate
guided by protocols.

4.2 Default Architecture

The CASA default architecture defines a set of component
roles mapping this control scheme into a functional con-

goals intentions

facts

operators

rules

select
intentions

monitor
conditions

execute
actions

Agent

services

communication

protocol

acts

execute
operators

maintain
goals

maintain
facts

Agent

goals intentions

facts

operators

rules

select
intentions

monitor
conditions

execute
actions

Agent

services

communication

protocol

acts

execute
operators

maintain
goals

maintain
facts

Agent

access

control

interaction

re-active

deliberative

interactive

access

control

interaction

re-active

deliberative

interactive

re-active

deliberative

interactive

Figure 3. Behaviour Control Scheme

trol architecture. This architecture is still open for differ-
ent implementations of the defined roles, but it is reason-
able to implement default components for application-
independent roles. Thus, an agent designer can compose a
new agent reusing generic components and only needs to
develop new components for application-specific tasks.
Also, he can use only particular parts of the default archi-
tecture or even another control structure, as long as its
interactive behaviour conforms to the requirements for
service interactions (see Section 4.3).

The default architecture consists of four parts: the core
agent, the control unit, the knowledge base, and the pe-
riphery (Figure 4). The components of the core agent
build the component system as described in Section 3.2.
Control unit and knowledge base together realise the con-
trol scheme. The knowledge base is a storage divided into
roles for the different types of knowledge, while control
functions are assigned to the roles of the control unit. The
periphery contains additional types of roles for auxiliary
and application-specific tasks.

Knowledge Base

The six roles of the knowledge base are the fact base, the
goal stack, the intention structure, the rule base, the plan
library, and the service library. Each of them is responsi-
ble to store, maintain, and provide knowledge of the ac-
cording type.

The fact base contains the assumptions of an agent about
the current state of the world. It has to be consistent at the
ground level, i.e. no two facts contradict each other. The
goal stack is an ordered list of the current goals. Its order

reflects the priority of the goals and hence the probability
to be pursued next. The intention structure reflects the
intentions coordinated according to conflicts, redundan-
cies, and execution order.

Rule base, plan library, and service library are mere con-
tainers for the procedural knowledge containing rules,
operators, and services.

All roles of the knowledge base provide the same func-
tionality to manage their contents by accessing and chang-
ing knowledge and monitoring changes of knowledge.

Control Unit

The control unit operates on the knowledge stored in the
knowledge base. Its roles can be grouped by the follow-
ing four tasks: representation, reaction, deliberation, and
interaction.

The representational tasks concern the environment and as
a special aspect time. The fact maintenance manages the
factual knowledge to reflect the current state of the world.
It has to keep the facts up-to-date and coherent, but
thereby it depends on the information other components
gain about the environment. The fact maintenance also
realises the reasoning capabilities of the agent by handling
not only isolated facts, but also complex propositions that
express changes of the world or whose truth has to be
evaluated relative to the current facts. Since time changes
continuously, the current time is not handled simply as a
frequently changing fact. Instead, the timer role serves as
an internal clock offering notifications for absolute, rela-
tive, and periodical time events.

For reactions, the situation assessment monitors changes
of factual knowledge for the situations described by the
rules contained in the rule base. If such a situation occurs,
the situation assessment changes the knowledge of the
agent according to the action part of the rule resulting in a
behaviour adapted to the new situation.

Deliberative behaviour emerges from six roles leading
from goals to acts: goal selection, act selection, plan gen-
eration, act evaluation, scheduler, and act execution. The
goal selection organises the motivational state of an agent.
All roles can add new goals. The goal selection updates,
evaluates, and coordinates the goals in the goal stack and
selects those to pursue next. These goals are passed to the
act selection to find actions to reach them. Therefore,
suitable operators have to be found and the best alterna-
tive has to be selected as a new intention. Since both
tasks may depend on the application domain, they can be
delegated to own roles for plan generation and act evalua-
tion. These roles are separated from the act selection in
favour of modularisation to allow different domain-
specific implementations. The act selection thereby only
realises the basic capabilities. The plan generation com-
bines operators to plans in a goal driven manner. The act

agent kernelmessage server control cycle

environmentagents

transport applicationsecurity management

peripherycore agent knowledge basecontrol unit

communi-
cation

goal
selection

situation
assessment

fact
maintenance

service
library

goal
stack

rule
base

fact
base

intention
structure

scheduler

act
selection

plan
generation

act
evaluation

plan
library

timer
act

execution

Figure 4. Roles of the Default Architecture

evaluation compares different acts to decide between
alternatives.

The scheduler coordinates the intentions of an agent re-
solving conflicts and utilising redundancies. It determines
the order of execution and selects the next intentions to
execute, which are passed to the act execution. The act
execution interprets the operators contained in the inten-
tions. Depending on the operator type, it is either exe-
cuted by the act execution itself or passed to the appropri-
ate role. The results from executing operators are reported
back.

Operators for services are executed by the communica-
tion. This role organises the interactive behaviour of an
agent. It initiates the usage of services and handles ser-
vice requests. In addition, the communication creates
speech acts to send and processes received speech acts.

Periphery

Since the structure of the periphery is not strictly deter-
mined by the CASA control scheme, it only defines
groups of roles each with a common functionality: the
application group, the transport group, the security group,
and the management group.

Application-specific tasks of an agent are realised by the
roles of the application group. This includes interactions
with the environment like sensory input and behavioural
output, but not communications. These roles can affect
the agent behaviour by stating new facts and raising new
goals. For deliberative acts, each primitive operator de-
notes an application role that implements its execution.

The communication role is just responsible for organising
communication at a higher level, while the transport of
speech acts between agents is left to the roles of the trans-
portation group. Each role of this group enables commu-
nication via a single communication channel like TCP/IP,
SSL, or IIOP. At run-time, it constitutes an address by
which the agent can send and receive speech acts. Re-
ceived speech acts are passed to the communication role,
which also is the source for speech acts to send.

To address security issues in communications between
agents, the communication role has to rely on the roles of
the security group. Security requirements for services
may include among other authentification of the commu-
nication partner by certificates, privacy of communication
via encryption, authorisation for service usage, and trust
relationships between agents [8, 9].

The roles of the management group control the agent and
its components at run-time. Their instances gain direct
access to the Agent Kernel and its functionality. There
are two directions of management: introspection and ma-
nipulation. The introspection collects and analyses run-
time information about the agent. The manipulation can

modify properties and the component set. Management
tasks include among other reconfiguration, fault detection
and correction, and performance measurement and im-
provement.

4.3 Agent Interaction

The control scheme and the default architecture of CASA
integrate the interactive capabilities of agents into the
overall behaviour control. All interactions between agents
are based on services, which are actions one agent per-
forms in behalf of another. A service is described as an
operator for planning from the point of view of the cus-
tomer of the service. Thus, the customer can use the ser-
vices of other agents to decide about its behaviour as any
other action, while only the execution is delegated to an-
other agent, which is called the provider of the service.
This allows for flexible and dynamic selection and combi-
nation of services for an agent to pursue its goals.

Communication between agents is based on shared on-
tologies, an agent communication language, and protocols
to ensure interoperability.

Since all interactions are according to a general scheme of
service usage, CASA defines a generic meta-protocol,
which handles the common aspects of service interactions.
It is initiated by the customer when requesting the service.
The protocol comprises three steps. First, a generic nego-
tiation phase is used to establish the possibility for interac-
tion. The provider ends this step by accepting or refusing
the initial request. In the second phase, the customer may
select one of several providers by negotiating service-
specific parameters using an embedded protocol. Then,
another embedded protocol may be used for service provi-
sion. Finally, the provider ends the meta-protocol by
communicating the result of the service usage. While the
generic meta-protocol is an integral part of CASA, the
embedded protocols for negotiation and service provision
are open for specific communications.

5 Related Work

Only few agent systems attempt to provide comprehensive
toolkits covering all aspects of agent development and
deployment. ZEUS [10] and AgentBuilder [11] both
emphasise the relevance of supporting the development
process by a methodology and a set of tools for agent
specification and system analysis. Also, each offers a
sound control architecture for knowledge-based agent
behaviour including appropriate specification languages.
ZEUS utilises a traditional planning approach and inte-
grates interactive capabilities. AgentBuilder uses a more
reactive control structure based on Agent-0 [12], but sup-
ports only simple message passing for agent interaction.
An infrastructure for multi-agent systems is provided by
ZEUS via dedicated Utility Agents, but is missed in

AgentBuilder. Both systems do not address security is-
sues or a generic user access scheme.

Many agent architectures concentrate on the internal
mechanisms for knowledge-based behaviour control.
Well-known examples are PRS/dMARS [13, 14] or In-
teRRaP [15]. These systems are usually based on theories
of action like BDI [6] and are inspired by the tradition of
artificial intelligence. To put the focus on the control
architecture leads to powerful systems, but most of these
systems lack to support the development process and to
provide a reliable infrastructure.

Other systems mainly provide an agent infrastructure, but
rely on only minimal agent models. Good examples are
JATLite [16] and the FIPA-compliant JADE [17]. These
systems support only the multi-agent aspect, but do not
integrate the single-agent view. Instead, agents are im-
plemented by conventional programming techniques and
languages like Java or by using a control architecture,
which is not part of the system itself. Either way, the
multi-agent functionality is not an integral part of the
single-agent behaviour mechanisms and vice versa, which
means that these will have to be adapted for each applica-
tion anew.

6 Conclusion and Outlook

JIAC IV is a comprehensive agent toolkit that is already
capable of providing the infrastructure for real-world
telecommunications and electronic commerce applica-
tions.

By its openness and scalability, the toolkit makes it easier
to develop new applications and to adapt running applica-
tions according to dynamic changes of customer demands
and by the integration of new services. This is achieved at
the single-agent level by the component framework of
CASA and at the multi-agent level by the agent infrastruc-
ture. Furthermore, application development and deploy-
ment is supported by a process model and a set of tools.

The control architecture allows to create agents that are
flexible enough to fulfil the tasks delegated to them by the
user reliable and autonomous. The interactive capabilities
enable agent societies with dynamic selection and combi-
nation of services.

The end user of applications realised with JIAC IV is
provided with a uniform and convenient way of accessing
the services, which are realised by agents. The supply and
integration of security and accounting functionalities are
prerequisites for commercial applications and are needed
for user acceptance.

Since agent systems tend to by very complex systems,
there are still some improvements to make on the concepts
and the implementation of JIAC IV. A critical point is the
competence needed by agents to make decisions accord-

ing to the intentions of the user it is acting for. The
mechanisms of the control architecture of CASA are still
generic. We aim to integrate aspects like personalisation
and learning that allow to adapt the decision making to the
demands and preferences of the individual user.

References
[1] Michael Wooldridge, Nicholas R. Jennings. Intelli-
gent Agents: Theory and Practice. Knowledge Engineer-
ing Review, October 1995.
[2] Nicholas R. Jennings, Michael J. Wooldridge (Eds).
Agent Technology: Foundations, Applications, and Mar-
kets. Springer-Verlag, 1998
[3] Stefan Fricke, Karsten Bsufka, Jan Keiser, Torge
Schmidt, Ralf Sesseler, Sahin Albayrak. Agent-based
Telematic Services and Telecom Applications. in: Com-
munications of the ACM, April 2001
[4] FIPA 2000 Specification. www.fipa.org.
[5] Stuart Russel, Peter Norwig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 1995.
[6] Philip R. Cohen, Hector J. Levesque. Intention is
Choice with Commitment. Artificial Intelligence, 42(3),
1990.
[7] Anand S. Rao, Michael P. Georgeff. BDI Agents:
From Theory to Practice. Proceedings of the First Interna-
tional Conference on Multi-Agent Systems, ICMAS 1995.
[8] FIPA ’98 Specification. www.fipa.org.
[9] Chelliah Thirunavukkarasu, Tim Finin, James May-
field. Secret Agents – A Security Architecture for the
KQML Agent Communication Language. CIKM'95 Intel-
ligent Information Agents Workshop, 1995.
[10] N. Azarmi, N. Thompson. ZEUS: A Toolkit for
Building Multi-Agent Systems. Proceedings of fifth an-
nual Embracing Complexity conference, Paris, 2000.
[11] Reticular Systems. Agent Builder - An Integrated
Toolkit for Constructing Intelligent Software Agents.
www.agentbuilder.com
[12] Yoav Shoham. Agent-Oriented Programming. Artifi-
cial Intelligence, Vol 60, pages 51-92, 1993
[13] Michael P. Georgeff, Francois F. Ingrand; Decision-
Making in an Embedded Reasoning System. in: Proceed-
ings of the Eleventh International Jopint Conference on
Artificial Intelligence (IJCAI-89)
[14] Mark d’Inverno, David Kinny, Michael Luck, Mi-
chael Wooldridge; A Formal Specification of dMARS.
Proceedings of the Fourth International Workshop on
Agent Theories, Architectures, and Languages, ATAL'97
[15] Christoph G. Jung & Klaus Fischer, Methodological
Comparison of Agent Models; DFKI Research Report
RR-98-01
[16] JATLite, java.stanford.edu
[17] F. Bellifemine, A. Poggi, G. Rimassa. Developing
multi-agent systems with JADE. Seventh International
Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-2000), Boston, MA, 2000.

